设f(x)在[0,2a]上连续,且f(0)=f(2a),证明:在[0,a]上至少存在一个ξ,使得f(ξ)=f(ξ+a)。

设f(x)在[0,2a]上连续,且f(0)=f(2a),证明:在[0,a]上至少存在一个ξ,使得f(ξ)=f(ξ+a)。

查看答案

设数列{an}的前n项和为Sn,且an+Sn=1(n∈N*)。(1)求{an}的通项公式;(2)若数列{bn}满足b1=1,且2bn+1=bn+an(n≥1),

设数列{an}的前n项和为Sn,且an+Sn=1(n∈N*)。(1)求{an}的通项公式;(2)若数列{bn}满足b1=1,且2bn+1=bn+an(n≥1),求数列{bn}的通项公式。

查看答案

“分式”是初中教学中必不可少的内容,是对分数的进一步抽象。学生已经学习了分数、整式的运算,而本节课的学习将为后面学习分式的运算、解分式方程奠定基础。本节对学生的

“分式”是初中教学中必不可少的内容,是对分数的进一步抽象。学生已经学习了分数、整式的运算,而本节课的学习将为后面学习分式的运算、解分式方程奠定基础。本节对学生的要求是①了解分式的概念;②明确分式和整式

查看答案