选择题:设A为3阶矩阵,α1,α2为A的分别属于-1,1的特征向量,向量α3满足Aα3=α2+α3。(Ⅰ)证明α1,α2,α3线性无关;(Ⅱ)令P=(α1,α2,α3)

  • 题目分类:研究生入学
  • 题目类型:选择题
  • 查看权限:VIP
题目内容:

设A为3阶矩阵,α1,α2为A的分别属于-1,1的特征向量,向量α3满足Aα3=α2+α3。

(Ⅰ)证明α1,α2,α3线性无关;

(Ⅱ)令P=(α1,α2,α3),求P-1AP。

答案解析:

(Ⅰ)设函数u(x),ν(x)可导,利用导数定义证明[u(x)ν(x)]’=u’(x)ν(x)+u(x)ν’(x);  (Ⅱ)设函数u1(x),u2(x),…,

(Ⅰ)设函数u(x),ν(x)可导,利用导数定义证明[u(x)ν(x)]’=u’(x)ν(x)+u(x)ν’(x);  (Ⅱ)设函数u1(x),u2(x),…,un(x)可导,f(x)=u1(x)u2

查看答案

设函数f(x)在定义域I上的导数大于零,若对任意的x0∈I,曲线y=f(x)在点(x0,f(x0))处的切线与直线x=x0及x轴所围成区域的面积恒为4,且f(0

设函数f(x)在定义域I上的导数大于零,若对任意的x0∈I,曲线y=f(x)在点(x0,f(x0))处的切线与直线x=x0及x轴所围成区域的面积恒为4,且f(0)=2,求f(x)的表达式.

查看答案

设X服从区间(-π/2,π/2)上的均匀分布,Y=sinX,则Cov(X,Y)=

设X服从区间(-π/2,π/2)上的均匀分布,Y=sinX,则Cov(X,Y)=

查看答案

设总体X的概率密度为    其中μ是已知参数,σ>0是未知参数,A是常数.X1,X2,…,Xn是来自总体X的简单随机样本.  (Ⅰ)求A;  (Ⅱ)求σ的最大似

设总体X的概率密度为    其中μ是已知参数,σ>0是未知参数,A是常数.X1,X2,…,Xn是来自总体X的简单随机样本.  (Ⅰ)求A;  (Ⅱ)求σ的最大似然估计量.

查看答案

已知a是常数,且矩阵可经初等列变换化为矩阵.  (Ⅰ)求a;  (Ⅱ)求满足AP=B的可逆矩阵P.

已知a是常数,且矩阵可经初等列变换化为矩阵.  (Ⅰ)求a;  (Ⅱ)求满足AP=B的可逆矩阵P.

查看答案