求函数u=x2+y2+z2在约束条件z=x2+y2和x+y+z=4下的最大值和最小值。

求函数u=x2+y2+z2在约束条件z=x2+y2和x+y+z=4下的最大值和最小值。

查看答案

设y(x)是区间(0,3/2)内的可导函数,且y(1)=0,点P是曲线L:y=y(x)上的任意一点,L在点P处的切线与y轴相交于点(0,yp),法线与x轴相交于

设y(x)是区间(0,3/2)内的可导函数,且y(1)=0,点P是曲线L:y=y(x)上的任意一点,L在点P处的切线与y轴相交于点(0,yp),法线与x轴相交于点(xp,0),若xp=yp,求L上点的

查看答案

设随机变量X的概率分布为P{X=1}=P{X=2}=,在给定X=i的条件下,随机变量Y服从均匀分布U(0,i)(i=1,2).  (Ⅰ)求Y的分布函数FY(y)

设随机变量X的概率分布为P{X=1}=P{X=2}=,在给定X=i的条件下,随机变量Y服从均匀分布U(0,i)(i=1,2).  (Ⅰ)求Y的分布函数FY(y);  (Ⅱ)求EY.

查看答案

(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f'(ξ)(b-a);(Ⅱ)证明

(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f'(ξ)(b-a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,

查看答案

设f(x)是连续函数,  (Ⅰ)利用定义证明函数可导,且F’(x)=f(x);  (Ⅱ)当f(x)是以2为周期的周期函数时,证明函数也是以2为周期的周期函数.

设f(x)是连续函数,  (Ⅰ)利用定义证明函数可导,且F’(x)=f(x);  (Ⅱ)当f(x)是以2为周期的周期函数时,证明函数也是以2为周期的周期函数.

查看答案