构造形式推理:(1) 如果小张和小王去看电影,则小李也去看电影.小赵不去看电影或小张去看电影.小王去看电影.所以,当小赵去看电影时,小李必定也去.
前提: 彐xF(x)→Аy(F(y)→R(y)),彐xF(x) 结论:彐xR(x)
前提: 彐xF(x)→Аy(F(y)→R(y)),彐xF(x) 结论:彐xR(x)
设命题公式A﹤=﹥-(P→Q),B﹤=﹥P→(Q→-P),则A与B的关系是( )。A. AB
设命题公式A﹤=﹥-(P→Q),B﹤=﹥P→(Q→-P),则A与B的关系是( )。A. AB B. BA C. A﹤=﹥B D. 以
设谓词公式A﹤=﹥АxP(x)→彐xQ(x),则A的前束范式是 A ﹤=﹥____________
设谓词公式A﹤=﹥АxP(x)→彐xQ(x),则A的前束范式是 A ﹤=﹥__________________________________________
下列关于集合的表示中正确的为( ).A. {a}{a, b, c} B. {a}{a, b, c
下列关于集合的表示中正确的为( ).A. {a}{a, b, c} B. {a}{a, b, c} C. {a, b, c} D. {a, b}{a
设命题公式 ,A﹤==﹥-(P→Q)∨(Q∧(-P→R)) 求A的主析取范式和主合取范式。.
设命题公式 ,A﹤==﹥-(P→Q)∨(Q∧(-P→R)) 求A的主析取范式和主合取范式。.
设集合A = {1,2,3,4}, A上的关系R={(1,1),(2,3),(2,4),(3,4)}
设集合A = {1,2,3,4}, A上的关系R={(1,1),(2,3),(2,4),(3,4)}, 则R具有( ).A. 自反性 B. 传递性C
设B={}, 则ρ(B)=_____________________.
设B={}, 则ρ(B)=_____________________.
自然数集合N的基数为______________________.
自然数集合N的基数为______________________.
设集合A={1, 2, 3, 4, 6, 8, 9, 12},R为整除关系。(1) 画出偏序集的哈斯
设集合A={1, 2, 3, 4, 6, 8, 9, 12},R为整除关系。(1) 画出偏序集的哈斯图;(2) 写出A的子集B = {3, 6, 9, 12}的
1. 设A=, B={φ,ρ(φ)} 则B-A=___________.
1. 设A=, B={φ,ρ(φ)} 则B-A=___________.
1. (10分)某班有60名学生,征订A,B,C三种杂志,其中23人订杂志A,25人订杂志B, 27
1. (10分)某班有60名学生,征订A,B,C三种杂志,其中23人订杂志A,25人订杂志B, 27 人订杂志C, 13人订杂志A和B, 14人订杂志A和C,1
设集合A={1,2,3}, A上的关系R={(1,1),(2,2),(2,3),(3,2),(3,3
设集合A={1,2,3}, A上的关系R={(1,1),(2,2),(2,3),(3,2),(3,3)},则R不具备( ).A. 自反性B. 传递性
设A={1,2,3,4},R是A上的等价关系,且R在A上所构成的等价类是{1},{2,3,4}(1)
设A={1,2,3,4},R是A上的等价关系,且R在A上所构成的等价类是{1},{2,3,4}(1). 求R; (2). 求RoR-1; (3). 画出R的关系
设A是有限集合,B是可数集合,证明:A×B是可数集合。
设A是有限集合,B是可数集合,证明:A×B是可数集合。
设集合A={1,2,3,4},R,S A×A , R={,,}, S={,,},求RoS,SoR ,
设集合A={1,2,3,4},R,S A×A , R={,,}, S={,,},求RoS,SoR ,R -1;并分别用矩阵运算求它们的关系矩阵。
命题x G(x)真值为1的充分必要条件是( ). A. 对任意x,G(x) 真值都为1. B
命题x G(x)真值为1的充分必要条件是( ). A. 对任意x,G(x) 真值都为1. B. 有一个x0,使G(x0) 真值为1. C. 有某些
设集合A={2,{a},3,4},B = {{a},3,4,1},U为全集,则下列命题正确的是(
设集合A={2,{a},3,4},B = {{a},3,4,1},U为全集,则下列命题正确的是( ).A. {2}A B. {a}A C. {{a}}
实数集合R的基数为______________________.
实数集合R的基数为______________________.